首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:Optimal Quantum Measurement Design on Speech Signal:Blind Minimax Estimator Improving MSE Over LS Estimators
  • 本地全文:下载
  • 作者:S.Karthikeyan ; P.Ganesh Kumar ; S.Sasikumar
  • 期刊名称:International Journal of Electronics Communication and Computer Technology
  • 印刷版ISSN:2249-7838
  • 出版年度:2012
  • 卷号:2
  • 期号:6
  • 页码:247-251
  • 出版社:International Journal of Electronics Communication and Computer Technology
  • 摘要:We consider the problem of estimating an unknown, deterministic speech signal parameters based on quantum measurements corrupted by white Gaussian noise. We design and analyze blind minimax estimator (BME), which consist of a bounded parameter set. Using minimax estimator, the parameter set is itself estimated from quantum measurements. Thus, our approach does not require any prior knowledge of bounded parameters, and the designed estimator can be applied to any linear regression problem. We demonstrate analytically that the BMEs strictly dominate the least-square (LS) estimator, i.e., they achieve lower mean-squared error (MSE) for any speech signal. Our approach can be readily compared with wide class of non-linear estimators like James Stein's estimator, which is defined for white noise. The result suggest that over a wide range of samples and signal to noise ratio the mean square error for Ellipsoidal Blind Minimax Estimator(EBME) is lower when compared with linear and non-linear estimators
  • 关键词:Quantum measurements; Minimax Estimator; White ;Gaussian noise; linear regression; Mean square error; Biased ;Estimation
国家哲学社会科学文献中心版权所有