期刊名称:International Journal on Computer Science and Engineering
印刷版ISSN:2229-5631
电子版ISSN:0975-3397
出版年度:2010
卷号:2
期号:9
页码:2783-2789
出版社:Engg Journals Publications
摘要:E-mail is one of the most popular and frequently used ways of communication due to its worldwide accessibility, relatively fast message transfer, and low sending cost. The flaws in the e-mail protocols and the increasing amount of electronic business and financial transactions directly contribute to the increase in e-mail-based threats. Email spam is one of the major problems of the today�s Internet, bringing financial damage to companies and annoying individual users. Among the approaches developed to stop spam, filtering is the one of the most important technique. Many researches in spam filtering have been centered on the more sophisticated classifierrelated issues. In recent days, Machine learning for spam classification is an important research issue. This paper explores and identifies the use of different learning algorithms for classifying spam messages from e-mail. A comparative analysis among the algorithms has also been presented.