期刊名称:International Journal of Computer Science, Engineering and Applications (IJCSEA)
印刷版ISSN:2231-0088
电子版ISSN:2230-9616
出版年度:2011
卷号:1
期号:4
出版社:Academy & Industry Research Collaboration Center (AIRCC)
摘要:Human gait, which is a new biometric aimed to recognize individuals by the way they walk have come to play an increasingly important role in visual surveillance applications. In this paper a novel hybrid holistic approach is proposed to show how behavioural walking characteristics can be used to recognize unauthorized and suspicious persons when they enter a surveillance area. Initially background is modelled from the input video captured from cameras deployed for security and the foreground moving object in the individual frames are segmented using the background subtraction algorithm. Then gait representing spatial, temporal and wavelet components are extracted and fused for training and testing multi class support vector machine models (SVM). The proposed system is evaluated using side view videos of NLPR database. The experimental results demonstrate that the proposed system achieves a pleasing recognition rate and also the results indicate that the classification ability of SVM with Radial Basis Function (RBF) is better than with other kernel functions.
关键词:Biometrics; Gait recognition; Silhouette images; Spatial; Temporal; Video Surveillance.