首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:Classification of Audio Data using Support Vector Machine
  • 本地全文:下载
  • 作者:Shruti Aggarwal ; Naveen Aggarwal
  • 期刊名称:International Journal of Computer Science & Technology
  • 印刷版ISSN:2229-4333
  • 电子版ISSN:0976-8491
  • 出版年度:2011
  • 卷号:2
  • 期号:3(Version 2)
  • 出版社:Ayushmaan Technologies
  • 摘要:Audio mining is to extract audio signals for indicating patterns and features of audio data to get data mining results. Various audio features like Mel frequency Cepstral Coefficient (MFCC), Linear Predictive Coefficient (LPC), Compactness, Spectral Flux (SF), Band Periodicity (BP), Zero Crossing Rate (ZCR) etc are used to classify audio data into various classes. Various classification algorithms such as Naive Bayes, FT, J48, ID3 and LibSVM are used to classify audio data into defined classes. Using various performance parameters such as True Positive (TP) Rate, False Positive (FP) Rate etc., results of various classification algorithms are compared.
  • 关键词:Audio Mining; audio classification; classification algorithms;Support Vector Machine; LibSVMO
国家哲学社会科学文献中心版权所有