首页    期刊浏览 2024年12月11日 星期三
登录注册

文章基本信息

  • 标题:CMOS Low Power Cell Library for Digital Design
  • 本地全文:下载
  • 作者:Kanika Kaur ; Arti Noor
  • 期刊名称:International Journal of VLSI Design & Communication Systems
  • 印刷版ISSN:0976-1527
  • 电子版ISSN:0976-1357
  • 出版年度:2013
  • 卷号:4
  • 期号:3
  • 出版社:Academy & Industry Research Collaboration Center (AIRCC)
  • 摘要:Historically, VLSI designers have focused on increasing the speed and reducing the area of digital systems. However, the evolution of portable systems and advanced Deep Sub-Micron fabrication technologies have brought power dissipation as another critical design factor. Low power design reduces cooling cost and increases reliability especially for high density systems. Moreover, it reduces the weight and size of portable devices. The power dissipation in CMOS circuits consists of static and dynamic components. Since dynamic power is proportional to V2 dd and static power is proportional to Vdd, lowering the supply voltage and device dimensions, the transistor threshold voltage also has to be scaled down to achieve the required performance. In case of static power, the power is consumed during the steady state condition i.e when there are no input/output transitions. Static power has two sources: DC power and Leakage power. Consecutively to facilitate voltage scaling without disturbing the performance, threshold voltage has to be minimized. Furthermore it leads to better noise margins and helps to avoid the hot carrier effects in short channel devices. In this paper we have been proposed the new CMOS library for the complex digital design using scaling the supply voltage and device dimensions and also suggest the methods to control the leakage current to obtain the minimum power dissipation at optimum value of supply voltage and transistor threshold. In this paper CMOS Cell library has been implemented using TSMC (0.18um) and TSMC (90nm) technology using HEP2 tool of IC designing from Mentor Graphics for various analysis and simulations.
  • 关键词:Cell Library; Dynamic Power; Subthreshold
国家哲学社会科学文献中心版权所有