首页    期刊浏览 2024年12月14日 星期六
登录注册

文章基本信息

  • 标题:Performance Analysis of Singular Value Decomposition (SVD) and Radial basis Function (RBF) Neural Networks for Epilepsy Risk Levels Classifications from EEG Signals
  • 本地全文:下载
  • 作者:R.Hari Kumar ; B.Vinoth Kumar ; K.Karthik
  • 期刊名称:International Journal of Soft Computing & Engineering
  • 电子版ISSN:2231-2307
  • 出版年度:2012
  • 卷号:2
  • 期号:4
  • 页码:232-236
  • 出版社:International Journal of Soft Computing & Engineering
  • 摘要:The objective of this paper is to compare the performance of Singular Value Decomposition (SVD) method and Radial Basis Function (RBF) Neural Network for optimization of fuzzy outputs in the epilepsy risk level classifications from EEG (Electroencephalogram) signals. The fuzzy pre classifier is used to classify the risk levels of epilepsy based on extracted parameters like energy, variance, peaks, sharp and spike waves, duration, events and covariance from the EEG signals of the patient. SVD and RBF neural network is exploited on the classified data to identify the optimized risk level (singleton) which characterizes the patient’s epilepsy risk level. The efficacy of the above methods is compared based on the bench mark parameters such as Performance Index (PI), and Quality Value (QV).
  • 关键词:Singular Value Decomposition; Radial Basis;Function Neural Network; Fuzzy Techniques; EEG Signals;Epilepsy risk levels.
国家哲学社会科学文献中心版权所有