摘要:This paper proposes and analyzes a mathematical model for a predator-prey interaction with the Allee effect on prey species and with self- and cross-diffusion. The effect of diffusion which can drive the model with zero-flux boundary conditions to Turing instability is investigated. We present numerical evidence of time evolution of patterns controlled by self- and cross-diffusion in the model and find that the model dynamics exhibits a cross-diffusion controlled formation growth to spotted and striped-like coexisting and spotted pattern replication. Moreover, we discuss the effect of cross-diffusivity on the stability of the nontrivial equilibrium of the model, which depends upon the magnitudes of the self- and cross-diffusion coefficients. The obtained results show that cross-diffusion plays an important role in the pattern formation of the predator-prey model. It is also useful to apply the reaction-diffusion model to reveal the spatial predation in the real world.