摘要:Blanchard and Huang introduced the notion of weakly mixing subset, and Oprocha and Zhang gave the concept of transitive subset and studied its basic properties. In this paper our main goal is to discuss the weakly mixing subsets and transitive subsets in set-valued discrete systems. We prove that a set-valued discrete system has a transitive subset if and only if original system has a weakly mixing subset. Moreover, we give an example showing that original system has a transitive subset, which does not imply set-valued discrete system has a transitive subset.