Bluetongue is a disease of ruminants which reached Denmark in 2007. We present a process-based stochastic simulation model of vector-borne diseases, where host animals are not confined to a central geographic farm coordinate, but can be distributed onto pasture areas. Furthermore vectors fly freely and display search behavior to locate areas with hosts. We also include wind spread of vectors, host movements, and vector seasonality. Results show that temperature and seasonality of vectors determines the period in which an incursion of Bluetongue may lead to epidemic spread in Denmark. Within this period of risk the number of infected hosts is affected by temperature, vector abundance, vector behavior, vectors' ability to locate hosts, and use of pasture. These results indicate that restricted grazing during outbreaks can reduce the number of infected hosts and the size of the affected area. The model can be implemented on other vector-borne diseases of grazing animals.
.© 2012 Macmillan Publishers Limited. All rights reserved