首页    期刊浏览 2025年03月03日 星期一
登录注册

文章基本信息

  • 标题:Learning Context For Text Categorization
  • 本地全文:下载
  • 作者:Y.V. Haribhakta ; Parag Kulkarni
  • 期刊名称:International Journal of Data Mining & Knowledge Management Process
  • 印刷版ISSN:2231-007X
  • 电子版ISSN:2230-9608
  • 出版年度:2011
  • 卷号:1
  • 期号:6
  • 出版社:Academy & Industry Research Collaboration Center (AIRCC)
  • 摘要:This paper describes our work which is based on discovering context for text document categorization. The document categorization approach is derived from a combination of a learning paradigm known as relation extraction and an technique known as context discovery. We demonstrate the effectiveness of our categorization approach using reuters 21578 dataset and synthetic real world data from sports domain. Our experimental results indicate that the learned context greatly improves the categorization performance as compared to traditional categorization approaches.
  • 关键词:Relation Extraction; Context Discovery; Context Feature Matrix; Context Score
国家哲学社会科学文献中心版权所有