We prove tight bounds of $\Theta(k \log k)$ queries for non-adaptively testing whether a function $f: \{ 0,1 \}^n \to \{ 0,1 \}$ is a $k$-parity or far from any $k$-parity. The lower bound combines a recent method of Blais, Brody and Matulef to get lower bounds for testing from communication complexity with an $\Omega(k\log k)$ lower bound for the one-way communication complexity of $k$-disjointness.