Unless a test is perfectly reliable and thus contains no error, every time we make a classification based on a test score, we should expect some number of misclassifications. We can expect that some examinees whose true ability is above the cut score will be incorrectly classified as non-masters (false negatives) and that some number of low-ability examinees will be incorrectly classified as masters (false positives).
This paper provides and illustrates a method to compute the expected number of misclassifications. This information can help policy makers decide whether the risks are sufficiently small or whether the costs for improvements are justified. One particularly useful application of this procedure is to estimate the probability of a true master consistently failing multiple test administrations. Another is to examine the impact of cut score adjustments. Web-based software to apply this method is available at http://pareonline.net/misclass/class.asp. PC based software is available from the author.