首页    期刊浏览 2024年12月01日 星期日
登录注册

文章基本信息

  • 标题:Time Hopping Technique for Faster Reinforcement Learning in Simulations
  • 本地全文:下载
  • 作者:P. Kormushev ; K. Nomoto ; F. Dong
  • 期刊名称:Cybernetics and Information Technologies
  • 印刷版ISSN:1311-9702
  • 电子版ISSN:1314-4081
  • 出版年度:2011
  • 卷号:11
  • 期号:3
  • 出版社:Bulgarian Academy of Science
  • 摘要:A technique called Time Hopping is proposed for speeding up reinforcement learning algorithms. It is applicable to continuous optimization problems running in computer simulations. Making shortcuts in time by hopping between distant states combined with off-policy reinforcement learning allows the technique to maintain higher learning rate. Experiments on a simulated biped crawling robot confirm that Time Hopping can accelerate the learning process more than seven times.
  • 关键词:Reinforcement learning; biped robot; discrete time systems; optimization;methods; computer simulation.
国家哲学社会科学文献中心版权所有