首页    期刊浏览 2025年01月19日 星期日
登录注册

文章基本信息

  • 标题:A New Approach to Sensitive Rule Hiding
  • 本地全文:下载
  • 作者:K. Duraiswamy ; D. Manjula ; N. Maheswari
  • 期刊名称:Computer and Information Science
  • 印刷版ISSN:1913-8989
  • 电子版ISSN:1913-8997
  • 出版年度:2008
  • 卷号:1
  • 期号:3
  • 页码:107
  • DOI:10.5539/cis.v1n3P107
  • 出版社:Canadian Center of Science and Education
  • 摘要:Normal 0 7.8 ? 0 2 false false false MicrosoftInternetExplorer4 <!-- /* Font Definitions */ @font-face {font-family:??; panose-1:2 1 6 0 3 1 1 1 1 1; mso-font-alt:SimSun; mso-font-charset:134; mso-generic-font-family:auto; mso-font-pitch:variable; mso-font-signature:3 135135232 16 0 262145 0;} @font-face {font-family:"\@??"; panose-1:2 1 6 0 3 1 1 1 1 1; mso-font-charset:134; mso-generic-font-family:auto; mso-font-pitch:variable; mso-font-signature:3 135135232 16 0 262145 0;} /* Style Definitions */ p.MsoNormal, li.MsoNormal, div.MsoNormal {mso-style-parent:""; margin:0cm; margin-bottom:.0001pt; text-align:justify; text-justify:inter-ideograph; mso-pagination:none; font-size:10.5pt; mso-bidi-font-size:12.0pt; font-family:"Times New Roman"; mso-fareast-font-family:??; mso-font-kerning:1.0pt;} /* Page Definitions */ @page {mso-page-border-surround-header:no; mso-page-border-surround-footer:no;} @page Section1 {size:612.0pt 792.0pt; margin:72.0pt 90.0pt 72.0pt 90.0pt; mso-header-margin:36.0pt; mso-footer-margin:36.0pt; mso-paper-source:0;} div.Section1 {page:Section1;} --> /* Style Definitions */ table.MsoNormalTable {mso-style-name:????; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Times New Roman"; mso-fareast-font-family:"Times New Roman"; mso-ansi-language:#0400; mso-fareast-language:#0400; mso-bidi-language:#0400;} Privacy preserving data mining is a novel research direction in data mining and statistical databases, which has recently been proposed in response to the concerns of preserving personal or sensible information derived from data mining algorithms. There have been two types of privacy proposed concerning data mining. The first type of privacy, called output privacy, is that the data is altered so that the mining result will preserve certain privacy. The second type of privacy, called input privacy, is that the data is manipulated so that the mining result is not affected or minimally affected. For output privacy in hiding association rules, current approaches require hidden rules or patterns to be given in advance. However, to specify hidden rules, entire data mining process needs to be executed. For some applications, only certain sensitive rules that contain sensitive items are required to hide. In this work, an algorithm SRH (Sensitive Rule Hiding) is proposed, to hide the sensitive rules that contain sensitive items, so that sensitive rules containing specified sensitive items on the right hand side of the rule cannot be inferred through association rule mining. Example illustrating the proposed approach is given. The characteristics of the algorithm are discussed.
国家哲学社会科学文献中心版权所有