首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:Characterization of Ventricular Tachycardia and Fibrillation Using Semantic Mining
  • 本地全文:下载
  • 作者:Mohd Afzan Othman ; Norlaili Mat Safri ; Ismawati Abdul Ghani
  • 期刊名称:Computer and Information Science
  • 印刷版ISSN:1913-8989
  • 电子版ISSN:1913-8997
  • 出版年度:2012
  • 卷号:5
  • 期号:5
  • 页码:35
  • DOI:10.5539/cis.v5n5p35
  • 出版社:Canadian Center of Science and Education
  • 摘要:

    Ventricular tachycardia (VT) and ventricular fibrillation (VF) are potentially life-threatening forms of cardiac arrhythmia. Fast and accurate detection of these conditions can save lives. We used semantic mining to characterize VT and VF episodes by extracting three significant parameters (frequency, damping coefficient and input signal) from electrocardiogram (ECG) signal. This method was used to analyze four-second ECG signals from a widely recognized database at the Massachusetts Institute of Technology (MIT). The method achieved a high sensitivity and specificity of 96.7% and 98.3%, respectively, and was capable of detecting normal sinus rhythm (N) from VT and VF signals without false detection, with a sensitivity of 100%. VT and VF signals were recognized from each other, with a recognition sensitivity of 96% and 94%, respectively. This newly proposed method using semantic mining shows strong potential for clinical applications because it is able to recognize VT and VF signals with higher accuracy and faster recognition times compare to existing methods.

国家哲学社会科学文献中心版权所有