首页    期刊浏览 2024年12月03日 星期二
登录注册

文章基本信息

  • 标题:Clustering based two-stage text classification requiring minimal training data
  • 本地全文:下载
  • 作者:Zhang Xue ; Xiao Wang-Xin
  • 期刊名称:Computer Science and Information Systems
  • 印刷版ISSN:1820-0214
  • 电子版ISSN:2406-1018
  • 出版年度:2012
  • 卷号:9
  • 期号:4
  • 页码:1627-1643
  • DOI:10.2298/CSIS120130044Z
  • 出版社:ComSIS Consortium
  • 摘要:

    Clustering has been employed to expand training data in some semi-supervised learning methods. Clustering based methods are based on the assumption that the learned clusters under the guidance of initial training data can somewhat characterize the underlying distribution of the data set. However, our experiments show that whether such assumption holds is based on both the separability of the considered data set and the size of the training data set. It is often violated on data set of bad separability, especially when the initial training data are too few. In this case, clustering based methods would perform worse. In this paper, we propose a clustering based two-stage text classification approach to address the above problem. In the first stage, labeled and unlabeled data are first clustered with the guidance of the labeled data. Then a self-training style clustering strategy is used to iteratively expand the training data under the guidance of an oracle or expert. At the second stage, discriminative classifiers can subsequently be trained with the expanded labeled data set. Unlike other clustering based methods, the proposed clustering strategy can effectively cope with data of bad separability. Furthermore, our proposed framework converts the challenging problem of sparsely labeled text classification into a supervised one, therefore, supervised classification models, e.g. SVM, can be applied, and techniques proposed for supervised learning can be used to further improve the classification accuracy, such as feature selection, sampling methods and data editing or noise filtering. Our experimental results demonstrated the effectiveness of our proposed approach especially when the size of the training data set is very small.

  • 关键词:text classification; clustering; active semi-supervised clustering; two-stage classification
国家哲学社会科学文献中心版权所有