Impairments of hearing and balance are major problems in the field of occupational and environmental health. Such impairments have previously been reported to be caused by genetic and environmental factors. However, their mechanisms have not been fully clarified. On the other hand, the inner ear contains spiral ganglion neurons (SGNs) in the organ of Corti, which serve as the primary carriers of auditory information from sensory cells to the auditory cortex in the cerebrum. Inner ears also contain a vestibule in the vicinity of the organ of Corti—one of the organs responsible for balance. Thus, inner ears could be a good target to clarify the pathogeneses of sensorineural hearing losses and impaired balance. In our previous studies with c - Ret knock-in mice and Endothelin receptor B ( Ednrb ) knock-out mice, it was found that syndromic hearing losses involved postnatal neurodegeneration of SGNs caused by impairments of c - Ret and Ednrb , which play important roles in neuronal development and maintenance of the enteric nervous system. The organ of Corti and the vestibule in inner ears also suffer from degeneration caused by environmental stresses including noise and heavy metals, resulting in impairments of hearing and balance. In this review, we introduce impairments of hearing and balance caused by genetic and environmental factors and focus on impairments of SGNs and the vestibule in inner ears as the pathogeneses caused by these factors.