期刊名称:Electronic Proceedings in Theoretical Computer Science
电子版ISSN:2075-2180
出版年度:2009
卷号:20
页码:76-79
DOI:10.4204/EPTCS.20.8
出版社:Open Publishing Association
摘要:The property that every control system should posses is stability, which translates into safety in real-life applications. A central tool in systems theory for synthesizing control laws that achieve stability are control Lyapunov functions (CLFs). Classically, a CLF enforces that the resulting closed-loop state trajectory is contained within a cone with a fixed, predefined shape, and which is centered at and converges to a desired converging point. However, such a requirement often proves to be overconservative, which is why most of the real-time controllers do not have a stability guarantee. Recently, a novel idea that improves the design of CLFs in terms of flexibility was proposed. The focus of this new approach is on the design of optimization problems that allow certain parameters that define a cone associated with a standard CLF to be decision variables. In this way non-monotonicity of the CLF is explicitly linked with a decision variable that can be optimized on-line. Conservativeness is significantly reduced compared to classical CLFs, which makes flexible CLFs more suitable for stabilization of constrained discrete-time nonlinear systems and real-time control. The purpose of this overview is to highlight the potential of flexible CLFs for real-time control of fast mechatronic systems, with sampling periods below one millisecond, which are widely employed in aerospace and automotive applications.