首页    期刊浏览 2025年03月03日 星期一
登录注册

文章基本信息

  • 标题:Roles of individual domains in the function of DHX29, an essential factor required for translation of structured mammalian mRNAs
  • 本地全文:下载
  • 作者:Vidya Dhote ; Trevor R. Sweeney ; Natalia Kim
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2012
  • 卷号:109
  • 期号:46
  • 页码:E3150-E3159
  • DOI:10.1073/pnas.1208014109
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:On most eukaryotic mRNAs, initiation codon selection involves base-by-base inspection of 5' UTRs by scanning ribosomal complexes. Although the eukaryotic initiation factors 4A/4B/4G can mediate scanning through medium-stability hairpins, scanning through more stable structures additionally requires DHX29, a member of the superfamily 2 DEAH/RNA helicase A (RHA) helicase family that binds to 40S subunits and possesses 40S-stimulated nucleoside triphosphatase (NTPase) activity. Here, sequence alignment and structural modeling indicated that DHX29 comprises a unique 534-aa-long N-terminal region (NTR), central catalytic RecA1/RecA2 domains containing a large insert in the RecA2 domain, and the C-terminal part, which includes winged-helix, ratchet, and oligonucleotide/oligosaccharide-binding (OB) domains that are characteristic of DEAH/RHA helicases. Functional characterization revealed that specific ribosomal targeting is required for DHX29's activity in initiation and is determined by elements that map to the NTR and to the N-terminal half of the winged-helix domain. The ribosome-binding determinant located in the NTR was identified as a putative double-stranded RNA-binding domain. Mutational analyses of RecA1/RecA2 domains confirmed the essential role of NTP hydrolysis for DHX29's function in initiation and validated the significance of a {beta}-hairpin protruding from RecA2. The large RecA2 insert played an autoinhibitory role in suppressing DHX29's intrinsic NTPase activity but was not essential for its 40S-stimulated NTPase activity and function in initiation. Deletion of the OB domain also increased DHX29's basal NTPase activity, but more importantly, abrogated the responsiveness of the NTPase activity to stimulation, which abolished DHX29's function in initiation. This finding suggests that the OB domain, which is specific for DEAH/RHA helicases, plays an important role in their NTPase cycle.
  • 关键词:DEAH/RHA family ; translation initiation
国家哲学社会科学文献中心版权所有