期刊名称:International Journal of Mathematics and Mathematical Sciences
印刷版ISSN:0161-1712
电子版ISSN:1687-0425
出版年度:2001
卷号:25
DOI:10.1155/S0161171201001971
出版社:Hindawi Publishing Corporation
摘要:Let L2=L2(D,r dr dθ/π) be the Lebesgue space on the
open unit disc and let La2=L2∩ℋol(D)
be the Bergman
space. Let P be the orthogonal projection of L2 onto La2 and let Q be the orthogonal projection onto L¯a,02={g∈L2;g¯∈La2,   g(0)=0}. Then I−P≥Q. The big Hankel operator and the small
Hankel operator on La2 are defined as: for ϕ in L∞, Hϕbig(f)=(I−P)(ϕf) and Hϕsmall(f)=Q(ϕf)(f∈La2). In this paper, the finite-rank intermediate
Hankel operators between Hϕbig and Hϕsmall are studied. We are working on the
more general space, that is, the weighted Bergman space.