期刊名称:International Journal of Mathematics and Mathematical Sciences
印刷版ISSN:0161-1712
电子版ISSN:1687-0425
出版年度:2005
卷号:2005
DOI:10.1155/IJMMS.2005.143
出版社:Hindawi Publishing Corporation
摘要:Some generalizations of Bailey's theorem involving the product of
two Kummer functions 1F1 are obtained by using Watson's
theorem and Srivastava's identities. Its special cases yield
various new transformations and reduction formulae involving
Pathan's quadruple hypergeometric functions
Fp(4), Srivastava's triple and quadruple hypergeometric
functions F(3), F(4), Lauricella's quadruple
hypergeometric function FA(4), Exton's multiple
hypergeometric functions XE:G;HA:B;D,
K10,
K13,
X8,
(k)H2(n),
(k)H4(n), Erdélyi's multiple hypergeometric function
Hn,k, Khan and Pathan's
triple hypergeometric function H4(P), Kampé de Fériet's double hypergeometric function
FE:G;HA:B;D, Appell's double hypergeometric function of the second kind
F2, and the Srivastava-Daoust function
FD:E(1);E(2);…;E(n)A:B(1);B(2);…;B(n).
Some known results of Buschman, Srivastava, and
Bailey are obtained.