标题:Weak gardens of Eden for <mml:math alttext="$1$" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mn>1</mml:mn></mml:math>-dimensional tessellation automata
期刊名称:International Journal of Mathematics and Mathematical Sciences
印刷版ISSN:0161-1712
电子版ISSN:1687-0425
出版年度:1985
卷号:8
DOI:10.1155/S0161171285000631
出版社:Hindawi Publishing Corporation
摘要:If T is the parallel map associated with a 1-dimensional tessellation automaton, then we say a configuration f is a weak Garden of Eden for T if f has no pre-image under T other than a shift of itself. Let WG(T)= the set of weak Gardens of Eden for T and G(T)= the set of Gardens of Eden (i.e., the set of configurations not in the range of T). Typically members of WG(T)−G(T) satisfy an equation of the form Tf=Smf where Sm is the shift defined by (Smf)(j)=f(j