期刊名称:International Journal of Mathematics and Mathematical Sciences
印刷版ISSN:0161-1712
电子版ISSN:1687-0425
出版年度:1987
卷号:10
DOI:10.1155/S0161171287000541
出版社:Hindawi Publishing Corporation
摘要:We extend F. Holland's definition of the space of resonant classes of functions, on the real line, to the space R(Φpq) (1≦p, q≦∞) of resonant classes of measures, on locally compact abelian groups. We characterize this space in terms of transformable measures and establish a realatlonship between R(Φpq) and the set of positive definite functions for amalgam spaces. As a consequence we answer the conjecture posed by L. Argabright and J. Gil de Lamadrid in their work on Fourier analysis of unbounded measures.