期刊名称:International Journal of Mathematics and Mathematical Sciences
印刷版ISSN:0161-1712
电子版ISSN:1687-0425
出版年度:1999
卷号:22
DOI:10.1155/S0161171299221618
出版社:Hindawi Publishing Corporation
摘要:In this article, we investigate the combined effects of viscosity and Ohmic electrical conductivity on upward and downward propagation oblique Alfvén waves in an isothermal atmosphere. It is shown that the presence and direction of the magnetic field play an important role in the structure and the heating mechanism of solar atmosphere. In addition, the atmosphere can be divided into two distinct regions connected by a transition region. In the
lower region, the solution can be written as a linear combination of an upward and a downward propagation wave with unequal wavelengths. In the upper region, the solution decays exponentially with the altitude. Moreover, the magnetic field creates a reflecting and a non-absorbing transition region. On the contrary, the viscosity and Ohmic electrical conductivity produce a reflecting and an absorbing transition region. The nature of the transition region depends on the relative strength of the viscous diffusivity with respect to the resistive diffusivity and on the direction of the magnetic field. A unique solution is determined.
The reflection coefficient and damping factors are derived and the conclusions are discussed in connection with the nature of the heating mechanism of the solar atmosphere.