首页    期刊浏览 2024年12月05日 星期四
登录注册

文章基本信息

  • 标题:On the uniqueness of the <mml:math alttext="$(2,2)$" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:mo>(</mml:mo><mml:mrow><mml:mn>2</mml:mn><mml:mo>,</mml:mo><mml:mn>2</mml:mn></mml:mrow><mml:mo>)</mml:mo></mml:mrow></mml:mrow></mml:math>-dimensional supertorus associated to a nontrivial representation of its underlying <mml:math alttext="$2$" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mn>2</mml:mn></mml:math>-torus, and having nontrivial odd brackets
  • 本地全文:下载
  • 作者:R. Peniche ; O. A. Sánchez-Valenzuela ; F. Thompson
  • 期刊名称:International Journal of Mathematics and Mathematical Sciences
  • 印刷版ISSN:0161-1712
  • 电子版ISSN:1687-0425
  • 出版年度:2004
  • 卷号:2004
  • DOI:10.1155/S0161171204305107
  • 出版社:Hindawi Publishing Corporation
  • 摘要:It is proved that up to isomorphism there is only one (2,2)-dimensional supertorus associated to a nontrivial representation of its underlying 2-torus, and that it has nontrivial odd brackets. This supertorus is obtained by finding out first a canonical form for its Lie superalgebra, and then using Lie's technique to represent it faithfully as supervector fields on a supermanifold. Those supervector fields can be integrated, and through their various integral flows the composition law for the supergroup is straightforwardly deduced. It turns out that this supertorus is precisely the supergroup described by Guhr (1993) following a formal analogy with the classical unitary group U(2) but with no further intrinsic characterization.
国家哲学社会科学文献中心版权所有