首页    期刊浏览 2024年12月04日 星期三
登录注册

文章基本信息

  • 标题:Quantum-Inspired Genetic Algorithm Based on Simulated Annealing for Combinatorial Optimization Problem
  • 本地全文:下载
  • 作者:Wanneng Shu
  • 期刊名称:International Journal of Distributed Sensor Networks
  • 印刷版ISSN:1550-1329
  • 电子版ISSN:1550-1477
  • 出版年度:2009
  • 卷号:5
  • DOI:10.1080/15501320802554992
  • 出版社:Hindawi Publishing Corporation
  • 摘要:Quantum-inspired genetic algorithm (QGA) is applied to simulated annealing (SA) to develop a class of quantum-inspired simulated annealing genetic algorithm (QSAGA) for combinatorial optimization. With the condition of preserving QGA advantages, QSAGA takes advantage of the SA algorithm so as to avoid premature convergence. To demonstrate its effectiveness and applicability, experiments are carried out on the knapsack problem. The results show that QSAGA performs well, without premature convergence as compared to QGA.
国家哲学社会科学文献中心版权所有