首页    期刊浏览 2024年12月03日 星期二
登录注册

文章基本信息

  • 标题:An Entropy-Based Multiobjective Evolutionary Algorithm with an Enhanced Elite Mechanism
  • 本地全文:下载
  • 作者:Yufang Qin ; Junzhong Ji ; Chunnian Liu
  • 期刊名称:Applied Computational Intelligence and Soft Computing
  • 印刷版ISSN:1687-9724
  • 电子版ISSN:1687-9732
  • 出版年度:2012
  • 卷号:2012
  • DOI:10.1155/2012/682372
  • 出版社:Hindawi Publishing Corporation
  • 摘要:Multiobjective optimization problem (MOP) is an important and challenging topic in the fields of industrial design and scientific research. Multi-objective evolutionary algorithm (MOEA) has proved to be one of the most efficient algorithms solving the multi-objective optimization. In this paper, we propose an entropy-based multi-objective evolutionary algorithm with an enhanced elite mechanism (E-MOEA), which improves the convergence and diversity of solution set in MOPs effectively. In this algorithm, an enhanced elite mechanism is applied to guide the direction of the evolution of the population. Specifically, it accelerates the population to approach the true Pareto front at the early stage of the evolution process. A strategy based on entropy is used to maintain the diversity of population when the population is near to the Pareto front. The proposed algorithm is executed on widely used test problems, and the simulated results show that the algorithm has better or comparative performances in convergence and diversity of solutions compared with two state-of-the-art evolutionary algorithms: NSGA-II, SPEA2 and the MOSADE.
国家哲学社会科学文献中心版权所有