首页    期刊浏览 2024年12月13日 星期五
登录注册

文章基本信息

  • 标题:Expectation-maximization estimators for incompletely observed data
  • 本地全文:下载
  • 作者:Vasić Vladimir V.
  • 期刊名称:Economic annals
  • 印刷版ISSN:0013-3264
  • 电子版ISSN:1820-7375
  • 出版年度:2004
  • 卷号:44
  • 期号:161
  • 页码:165-173
  • DOI:10.2298/EKA0461165V
  • 出版社:Faculty of Economics, Belgrade
  • 摘要:

    Expectation-maximization is a broadly applicable approach to the iterative computation of maximum likelihood estimates. Each iteration of expectation-maximization method consists of two steps: the expectation step and the maximization step. Expectation-maximization method is useful in a variety of problems where the maximum likelihood estimates are very difficult to find. The basic idea of expectation-maximization method is to relate incomplete data problems to complete data problems where estimation by maximum likelihood method is much simpler.

  • 关键词:expectation-maximization method; maximum likelihood method; statistical estimators; censored exponential distribution model; mixed distribution model
国家哲学社会科学文献中心版权所有