摘要:Periodic environments may either enhance or suppress a population via resonant or attenuant cycles. We derive signature functions for predicting the responses of two competing populations to 2-periodic oscillations in six model parameters. Two of these parameters provide a non-trivial equilibrium and two provide the carrying capacities of each species in the absence of the other, but the remaining two are arbitrary and could be intrinsic growth rates. Each signature function is the sign of a weighted sum of the relative strengths of the oscillations of the perturbed parameters. Periodic environments are favourable for populations when the signature function is positive and are deleterious if the signature function is negative. We compute the signature functions of four classical, discrete-time two-species populations and determine regions in parameter space which are either favourable or detrimental to the populations. The six-parameter models include the Logistic, Ricker, Beverton–Holt, and Hassell models.
关键词:attenuance; competition; periodic forcing; resonance; signature function