首页    期刊浏览 2025年01月21日 星期二
登录注册

文章基本信息

  • 标题:Data point selection for cross-language adaptation of dependency parsers
  • 本地全文:下载
  • 作者:Anders Søgaard
  • 期刊名称:Conference on European Chapter of the Association for Computational Linguistics (EACL)
  • 出版年度:2011
  • 卷号:2011
  • 出版社:ACL Anthology
  • 摘要:We consider a very simple, yet effective, approach to cross language adaptation of dependency parsers. We first remove lexical items from the treebanks and map part-of-speech tags into a common tagset. We then train a languagemodel on tag sequences in otherwise unlabeled target data and rank labeled source data by perplexity per word of tag sequences from less similar to most similar to the target. We then train our target language parser on the most similar data points in the source labeled data. The strategy achieves much better results than a non-adapted baseline and stateof- the-art unsupervised dependency parsing, and results are comparable to more complex projection-based cross language adaptation algorithms.
国家哲学社会科学文献中心版权所有