首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:Regularization in Regression: Comparing Bayesian and Frequentist Methods in a Poorly Informative Situation
  • 本地全文:下载
  • 作者:Gilles Celeux ; Mohammed El Anbari ; Jean-Michel Marin
  • 期刊名称:Bayesian Analysis
  • 印刷版ISSN:1931-6690
  • 电子版ISSN:1936-0975
  • 出版年度:2012
  • 卷号:07
  • 期号:02
  • DOI:10.1214/12-BA716
  • 出版社:International Society for Bayesian Analysis
  • 摘要:

    Using a collection of simulated and real benchmarks, we compare
    Bayesian and frequentist regularization approaches under a low informative con-
    straint when the number of variables is almost equal to the number of observations
    on simulated and real datasets. This comparison includes new global noninforma-
    tive approaches for Bayesian variable selection built on Zellner's g-priors that are
    similar to Liang et al. (2008). The interest of those calibration-free proposals is
    discussed. The numerical experiments we present highlight the appeal of Bayesian
    regularization methods, when compared with non-Bayesian alternatives. They
    dominate frequentist methods in the sense that they provide smaller prediction
    errors while selecting the most relevant variables in a parsimonious way.

  • 关键词:Model choice; regularization methods; noninformative priors; Zellner'sg{prior; calibration; Lasso; elastic net; Dantzig select
国家哲学社会科学文献中心版权所有