期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2012
卷号:109
期号:25
页码:9716-9720
DOI:10.1073/pnas.1201201109
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:Smooth wrinkles and sharply crumpled regions are familiar motifs in biological or synthetic sheets, such as rapidly growing plant leaves and crushed foils. Previous studies have addressed both morphological types, but the generic route whereby a featureless sheet develops a complex shape remains elusive. Here we show that this route proceeds through an unusual sequence of distinct symmetry-breaking instabilities. The object of our study is an ultrathin circular sheet stretched over a liquid drop. As the curvature is gradually increased, the surface tension stretching the sheet over the drop causes compression along circles of latitude. The compression is relieved first by a transition into a wrinkle pattern, and then into a crumpled state via a continuous transition. Our data provide conclusive evidence that wrinkle patterns in highly bendable sheets are not described by classical buckling methods, but rather by a theory which assumes that wrinkles completely relax the compressive stress. With this understanding we recognize the observed sequence of transitions as distinct symmetry breakings of the shape and the stress field. The axial symmetry of the shape is broken upon wrinkling but the underlying stress field preserves this symmetry. Thus, the wrinkle-to-crumple transition marks symmetry-breaking of the stress in highly bendable sheets. By contrast, other instabilities of sheets, such as blistering and cracking, break the homogeneity of shape and stress simultaneously. The onset of crumpling occurs when the wrinkle pattern grows to half the sheet's radius, suggesting a geometric, material-independent origin for this transition.