首页    期刊浏览 2025年02月22日 星期六
登录注册

文章基本信息

  • 标题:Kernel Density Estimation and Extended CLT and SLLN in ARCH(p)-Time Series
  • 本地全文:下载
  • 作者:Fuxia Cheng ; Illinois State University, Normal, USA
  • 期刊名称:Sankhya. Series A, mathematical statistics and probability
  • 印刷版ISSN:0976-836X
  • 电子版ISSN:0976-8378
  • 出版年度:2007
  • 卷号:69
  • 期号:04
  • 出版社:Indian Statistical Institute
  • 摘要:In this paper we consider the estimation of the innovation density and the asymptotics of the sum of residuals and the sum of squared residuals in ARCH(p)-time series. We obtain the weak and strong uniform consistency of the kernel density estimators based on the residuals. We extend the Central Limit Theorem (CLT) and the Strong Law of Large Number (SLLN) to the average of residuals. For the average of squared residuals, we show its weak and strong consistency to the innovation variance.
  • 关键词:ARCH(p)-time series, Kernel density estimation, residuals, CLT, SLLN.
国家哲学社会科学文献中心版权所有