首页    期刊浏览 2024年12月16日 星期一
登录注册

文章基本信息

  • 标题:Optimal Block Size for Variance Estimation by a Spatial Block Bootstrap Method
  • 本地全文:下载
  • 作者:Daniel J. Nordman ; Soumendra N. Lahiri ; Iowa State University, Ames
  • 期刊名称:Sankhya. Series A, mathematical statistics and probability
  • 印刷版ISSN:0976-836X
  • 电子版ISSN:0976-8378
  • 出版年度:2007
  • 卷号:69
  • 期号:03
  • 出版社:Indian Statistical Institute
  • 摘要:This paper considers the block selection problem for a block bootstrap variance estimator applied to spatial data on a regular grid. We develop precise formulae for the optimal block sizes that minimize the mean squared error of the bootstrap variance estimator. We then describe practical methods for estimating these spatial block sizes and prove the consistency of a block selection method by Hall, Horowitz and Jing (1995), originally introduced for time series. The spatial block bootstrap method is illustrated through data examples, and its performance is investigated through several simulation studies.
  • 关键词:Block bootstrap, empirical block choice, stationary random fields.
国家哲学社会科学文献中心版权所有