首页    期刊浏览 2025年02月28日 星期五
登录注册

文章基本信息

  • 标题:MIVQUE and Maximum Likelihood Estimation for Multivariate Linear Models with Incomplete Observations
  • 本地全文:下载
  • 作者:David Causeur ; Laboratoire de Math\'{e}matiques Appliqu\'{e}es, Rennes, France
  • 期刊名称:Sankhya. Series A, mathematical statistics and probability
  • 印刷版ISSN:0976-836X
  • 电子版ISSN:0976-8378
  • 出版年度:2006
  • 卷号:68
  • 期号:03
  • 出版社:Indian Statistical Institute
  • 摘要:The problem of estimating the parameters of multivariate linear models in the context of an arbitrary pattern of missing data is addressed in the present paper. While this problem is frequently handled by EM strategies, we propose a Gauss-Markov approach based on an initial linearization of the covariance of the model. A complete class of quadratic estimators is first exhibited in order to derive locally Minimum Variance Quadratic Unbiased Estimators (MIVQUE) of the variance parameters. Apart from the interest in locally MIVQUE itself, this approach gives more insight into maximum likelihood estimation. Indeed, an iterated version of MIVQUE is proposed as an alternative to EM to calculate the maximum likelihood estimators. Finally, MIVQUE and maximum likelihood estimation are compared by simulations.
  • 关键词:Incomplete observations, MIVQUE, multivariate linear models
国家哲学社会科学文献中心版权所有