首页    期刊浏览 2025年02月28日 星期五
登录注册

文章基本信息

  • 标题:Development and characterization of essential fatty acid deficiency in human endothelial cells in culture
  • 本地全文:下载
  • 作者:R Lerner ; P Lindström ; A Berg
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:1995
  • 卷号:92
  • 期号:4
  • 页码:1147-1151
  • DOI:10.1073/pnas.92.4.1147
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:We induced an essential fatty acid deficiency (EFAD) in human umbilical vein endothelial cells by culture in medium with 20% (vol/vol) delipidated fetal calf serum. EFAD, reflected by decreased cellular linoleic acid (18:2 omega 6) and arachidonic acid (20:4 omega 6) and emergence of the oleic acid derivative 5,8,11-eicosatrienoic acid (20:3 omega 9; Mead's acid), was evident after 1 week of culture and became pronounced after 2 weeks. Beyond that time point, control cells (cultured in 20% normal fetal calf serum) grew deficient of 18:2 omega 6, and EFAD cells died. 18:2 omega 6 addition to EFAD cells resulted in dose-dependent increases of 18:2 omega 6 and 20:4 omega 6. 20:4 omega 6 or 5,8,11,14,17-eicosapentaenoic acid (20:5 omega 3) additions resulted in normalization of these acids, and conversion of 20:5 omega 3 to 4,7,10,13,16,19-docosahexaenoic acid (22:6 omega 3) was noted. Agonist-induced increases in concentrations of prostacycline (prostaglandin I2; PGI2) and cytosolic Ca2+, [Ca2+]i, were reduced in EFAD cells and not restored by 18:2 omega 6 or 20:4 omega 6 additions. Change of the medium in EFAD cultures 1 day before the experiments decreased 20:3 omega 9 and normalized the PGI2 production and [Ca2+]i changes, whereas addition of 20:3 omega 9 to control cells impaired the [Ca2+]i response, indicating a suppressive effect of 20:3 omega 9. Thus, EFAD in endothelial cells is associated with abnormalities of eicosanoid and second-messenger production partly attributable to 20:3 omega 9 accumulation. Moreover, the gradual emergence of 18:2 omega 6 deficiency in regularly grown control cells underlines the need for careful analysis of fatty acids in long-term cell cultures.
国家哲学社会科学文献中心版权所有