期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:1987
卷号:84
期号:8
页码:2528-2531
DOI:10.1073/pnas.84.8.2528
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:Central nervous system (CNS) neurons of mammals regenerate poorly after axonal injury. However, if an injured CNS neuron (rabbit optic nerve) is supplied with appropriate soluble substances ("growth-associated triggering factors") derived from medium conditioned by regenerating fish optic nerve or newborn rabbit optic nerve, it can express regeneration-associated characteristics. Such characteristics include a general increase in protein synthesis, changes in synthesis of specific polypeptides, and sprouting of nerve fibers in culture. The present study of rabbit optic nerves demonstrates that such active substances affect the neuronal environment (i.e., the non-neuronal cells), thereby perhaps causing a shift in the environment from an inhibitory to a regenerative supportive one. Apparently, such an environment is spontaneously achieved in injured CNS nerves of lower vertebrates (e.g., fish optic nerves), which are regenerable. Treatment of injured rabbit optic nerve with soluble factors from medium conditioned by regenerating carp optic nerve resulted in a selective increase in proliferation ([3H]thymidine incorporation) of perineural cells and the appearance of a 12-kDa polypeptide in a homogenate derived from the nerve and its associated cells. This polypeptide may be related to growth, since it comigrates in NaDodSO4/polyacrylamide gel electrophoresis with a 12-kDa polypeptide that is continuously present in a regenerative system. In addition, there were injury-induced changes in the polypeptides of the nerve that were independent of treatment with conditioned medium and were correlated with nerve maturation. The most prominent changes of this type were in 18-kDa and 25-kDa polypeptides whose levels were reduced after injury and were found to be correlated with the nerve maturation (myelination) state.