期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:1982
卷号:79
期号:19
页码:5828-5832
DOI:10.1073/pnas.79.19.5828
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:13C and 31P NMR spectra of wild-type Escherichia coli showed resonances from metabolic intermediates of glycolysis and ATP formation but no detectable signals from aromatic amino acids. However, tyrosine biosynthesis from D-[l-13C]glucose was observed in cells harboring a feedback-resistant allele of aroF, the gene encoding tyrosine-sensitive 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase [7-phospho-2-keto-3-deoxy-D-arabino-heptonate D-erythrose-4-phosphate-lyase (pyruvate-phosphorylating), EC4.1.2.15], one of the isoenzymes that control carbon flow through the common aromatic biosynthetic pathway. A similar accumulation of tyrosine and phenylalanine is seen in cells carrying a multiple-copy plasmid that carries a wild-type aroF allele in addition to pheA and tyrA, the structural genes for controlling enzymes of the terminal pathways to phenylalanine and tyrosine biosynthesis. These in vivo measurements by a noninvasive probe suggest feedback inhibition as the quantitatively major mechanism controlling carbon flow in the common aromatic compound biosynthetic pathway. In strains accumulating aromatic amino acids, a transient accumulation of trehalose was detected, indicating that previously unknown changes in Escherichia coli metabolism accompany overproduction of aromatic compounds.