期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:1982
卷号:79
期号:10
页码:3171-3175
DOI:10.1073/pnas.79.10.3171
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:recA protein, in the presence of single-stranded DNA binding protein and ATP, promotes the complete exchange of strands between circular single-stranded DNA containing pyrimidine dimers and a homologous linear duplex, converting the pyrimidine dimer-containing single-stranded DNA to a circular duplex. Bypass of a pyrimidine dimer during the branch-migration phase of the reaction requires approximately 20 seconds, a rate 1/50th of that in the absence of the dimer. The circular duplex product is specifically incised by the pyrimidine dimer-specific T4 endonuclease V, and the resulting 3' hydroxyl termini can serve as primers for deoxynucleotide polymerization by DNA polymerase I. These findings indicate that recA protein serves a direct role in recombinational repair and demonstrate that the pyrimidine dimers that have been bypassed can be processed by enzymes of the excision-repair pathway.