首页    期刊浏览 2024年11月29日 星期五
登录注册

文章基本信息

  • 标题:A Bcl-2 homolog encoded by Kaposi sarcoma-associated virus, human herpesvirus 8, inhibits apoptosis but does not heterodimerize with Bax or Bak
  • 本地全文:下载
  • 作者:Emily H.-Y. Cheng ; John Nicholas ; David S. Bellows
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:1997
  • 卷号:94
  • 期号:2
  • 页码:690-694
  • DOI:10.1073/pnas.94.2.690
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:The Bcl-2 protein family is characterized by the ability to modulate cell death, and members of this family share two highly conserved domains called Bcl-2 homology 1 (BH1) and 2 (BH2) which have been shown to be critical for the death-repressor activity of Bcl-2 and Bcl-xL. Through sequence analysis we identified a novel viral Bcl-2 homolog, designated KSbcl-2, from human herpesvirus 8 (HHV8) or Kaposi sarcoma-associated herpesvirus. The overall amino acid sequence identity between KSbcl-2 and other Bcl-2 homologs is low (15-20%) but concentrated within the BH1 and BH2 regions. Overexpression of KSbcl-2 blocked apoptosis as efficiently as Bcl-2, Bcl-xL, or another viral Bcl-2 homolog encoded by Epstein-Barr virus, BHRF1. Interestingly, KSbcl-2 neither homodimerizes nor heterodimerizes with other Bcl-2 family members, suggesting that KSbcl-2 may have evolved to escape any negative regulatory effects of the cellular Bax and Bak proteins. Furthermore, the herpesvirus Bcl-2 homologs including KSbcl-2, BHRF1, and ORF16 of herpesvirus saimiri contain poorly conserved Bcl-2 homology 3 (BH3) domains compared with other mammalian Bcl-2 homologs, implying that BH3 may not be essential for anti-apoptotic function. This is consistent with our observation that amino acid substitutions within the BH3 domain of Bcl-xL had no effect on its death-suppressor activity.
国家哲学社会科学文献中心版权所有