首页    期刊浏览 2024年11月29日 星期五
登录注册

文章基本信息

  • 标题:Renaturation of complementary DNA strands mediated by purified mammalian heterogeneous nuclear ribonucleoprotein A1 protein: implications for a mechanism for rapid molecular assembly.
  • 本地全文:下载
  • 作者:B W Pontius ; P Berg
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:1990
  • 卷号:87
  • 期号:21
  • 页码:8403-8407
  • DOI:10.1073/pnas.87.21.8403
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:Purified heterogeneous nuclear ribonucleoprotein (hnRNP) A1 protein, which is found in vivo associated with heterogeneous nuclear RNA (hnRNA), promotes the rapid renaturation of nucleic acid strands. Maximal renaturation activity requires the glycine-rich carboxyl-terminal one-third of the protein, although the amino-terminal two-thirds also has activity. The A1-mediated reaction is second-order with respect to complementary DNA concentration, and the renaturation rate constant at 37 degrees C with A1 is about 3000-fold greater than in the absence of the protein. At 60 degrees C, the A1-mediated renaturation rate is even faster, and is about 300-fold greater than protein-free reactions carried out at 68 degrees C in 1 M NaCl. Provided that sufficient A1 protein is present to coat all strands in solution, the presence of nonhomologous, single-stranded DNA does not significantly inhibit the reaction. Moreover, renaturation of short strands to their complement contained in very long strands is nearly as efficient as between two short strands. These results indicate that A1 may be useful for procedures that rely on nucleic acid renaturation. We propose that A1 promotes rapid renaturation primarily by reducing the entropic barrier of bimolecular strand association through relatively transient interactions between A1-coated strands. Such interactions, mediated by flexible repeating domains, may act generally to increase the association kinetics of highly specific molecular assemblies in processes such as RNA maturation, transcription, translation, and transport.
国家哲学社会科学文献中心版权所有