首页    期刊浏览 2024年12月05日 星期四
登录注册

文章基本信息

  • 标题:Pathway of proton transfer in bacterial reaction centers: replacement of serine-L223 by alanine inhibits electron and proton transfers associated with reduction of quinone to dihydroquinone
  • 本地全文:下载
  • 作者:M L Paddock ; P H McPherson ; G Feher
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:1990
  • 卷号:87
  • 期号:17
  • 页码:6803-6807
  • DOI:10.1073/pnas.87.17.6803
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:The pathway of proton transfer in the reaction center (RC) from Rhodobacter sphaeroides was investigated by site-directed mutagenesis. Ser-L223, a putative proton donor that forms a hydrogen bond with the secondary quinone acceptor QB, was replaced with Ala and Thr. RCs with Ala-L223 displayed reduced electron transfer and proton uptake rates in the reaction QA-QB- + 2H+----QAQBH2. The rate constant for this reaction, k(2)AB, was found to be reduced approximately 350-fold to 4.0 +/- 0.2 s-1. Proton uptake measurements using a pH indicator dye showed a rapid uptake of 1 H+ per RC followed by a slower uptake of 1 H+ per RC at a rate of 4.1 +/- 0.1 s-1; native RCs showed a rapid uptake of 2H+ per RC. Evidence is provided that these changes were not due to gross structural changes in the binding site of QB. RCs with Thr-L223 showed little reduction in the rates of electron and proton transfer. These results indicate that proton transfer from the hydroxyl group of Ser-L223 or Thr-L223 is required for fast electron and proton transfer associated with the formation of the dihydroquinone QH2. In contrast, previous work showed that replacing Glu-L212, another putative proton donor to QB, with Gln slowed proton uptake from solution without significantly altering electron transfer. We propose a model that involves two distinct proton transfer steps. The first step occurs prior to transfer of the second electron to QB and involves proton transfer from Ser-L223. The second step occurs after this electron transfer through a pathway involving Glu-L212.
国家哲学社会科学文献中心版权所有