期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:1990
卷号:87
期号:15
页码:5739-5743
DOI:10.1073/pnas.87.15.5739
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:The biflagellate alga Chlamydomonas has been used extensively in the genetic and biochemical analysis of flagellar assembly and motility. We have restored motility to a paralyzed-flagella mutant of Chlamydomonas by transforming with the corresponding wild-type gene. A nitrate reductase-deficient paralyzed-flagella strain, nit1-305 pf-14, carrying mutations in the genes for nitrate reductase and radial spoke protein 3, was transformed with wild-type copies of both genes. Two-thirds of the cells that survived nitrate selection also regained motility, indicating that they had been transformed with both the nitrate reductase and radial spoke protein 3 genes. Transformants typically contained multiple copies of both genes, genetically linked to each other, but not linked to the original mutant loci. Complementation of paralyzed-flagella mutants by transformation is a powerful tool for investigating flagellar assembly and function.