期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2005
卷号:102
期号:48
页码:17354-17359
DOI:10.1073/pnas.0506961102
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:The classical Monod-Wyman-Changeux model for homogeneous allosteric protein complex is generalized in this article to model the responses of heterogeneous receptor complexes to multiple types of ligand stimulus. We show that the recent in vivo experimental data of Escherichia coli chemotaxis responses for mutant strains with different expression levels of the chemo-receptors to different types of stimulus [Sourjik, V. & Berg, H. C. (2004) Nature 428, 437-441] all can be explained consistently within this generalized Monod-Wyman-Changeux model. Based on the model and the existing data, responses of all of the strains (studied in this article) to the presence of any combinations of ligand (Ser and MeAsp) concentrations are predicted quantitatively for future experimental verification. Through modeling the in vivo response data, our study reveals important information about the properties of different types of individual receptors, as well as the composition of the cluster. The energetic contribution of the nonligand binding, cytoplasmic parts of the cluster, such as CheA and CheW, is also discussed. The generalized allosteric model provides a consistent framework in understanding signal integration and differentiation in bacterial chemotaxis. It should also be useful for studying the functions of other heterogeneous receptor complexes.