期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2004
卷号:101
期号:37
页码:13478-13482
DOI:10.1073/pnas.0404057101
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:To examine whether helix formation necessarily precedes chain collision, we have measured the folding of a fully helical coiled coil that has been specially engineered to have negligible intrinsic helical propensity but high overall stability. The folding rate approaches the diffusion-limited value and is much faster than possible if folding is contingent on precollision helix formation. Therefore, the collision of two unstructured chains is the initial step of the dominant kinetic pathway, whereas helicity exerts its influence only at a later step. Folding from an unstructured encounter complex may be efficient and robust, which has implications for any biological process that couples folding to binding.