期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2004
卷号:101
期号:28
页码:10476-10481
DOI:10.1073/pnas.0401902101
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:Recent evidence suggests that odor-driven responses in the insect antennal lobe (AL) can be modified by associative and nonassociative processes, as has been shown in the vertebrate olfactory bulb. However, the specific network changes that occur in response to olfactory learning remain unknown. To characterize changes in AL network activity during learning, we developed an in vivo protocol in Manduca sexta that allows continuous monitoring of neural ensembles and feeding behavior over the course of olfactory conditioning. Here, we show that Pavlovian conditioning produced a net recruitment of responsive neural units across the AL that persisted after conditioning. Recruitment only occurred when odor reliably predicted food. Conversely, when odor did not predict food, a net loss of responsive units occurred. Simultaneous measures of feeding responses indicated that the treatment-specific patterns of neural recruitment were positively correlated with changes in the insect's behavioral response to odor. In addition to recruitment, conditioning also produced consistent and profound shifts in the temporal responses of 16% of recorded units. These results show that odor representations in the AL are dynamic and related to olfactory memory consolidation. We furthermore provide evidence that the basis of the learning-dependent changes in the AL is not simply an increase in activity in the neural network representing an odorant. Rather, learning produces a restructuring of spatial and temporal components of network responses to odor in the AL.