首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:Learning Entailment Relations by Global Graph Structure Optimization
  • 本地全文:下载
  • 作者:Jonathan Berant ; Ido Dagan ; Jacob Goldberger
  • 期刊名称:Computational Linguistics
  • 印刷版ISSN:0891-2017
  • 电子版ISSN:1530-9312
  • 出版年度:2012
  • 卷号:38
  • 期号:1
  • 页码:73-111
  • DOI:10.1162/COLI_a_00085
  • 语种:English
  • 出版社:MIT Press
  • 摘要:Abstract Identifying entailment relations between predicates is an important part of applied semantic inference. In this article we propose a global inference algorithm that learns such entailment rules. First, we define a graph structure over predicates that represents entailment relations as directed edges. Then, we use a global transitivity constraint on the graph to learn the optimal set of edges, formulating the optimization problem as an Integer Linear Program. The algorithm is applied in a setting where, given a target concept, the algorithm learns on the fly all entailment rules between predicates that co-occur with this concept. Results show that our global algorithm improves performance over baseline algorithms by more than 10%.
国家哲学社会科学文献中心版权所有