首页    期刊浏览 2025年01月25日 星期六
登录注册

文章基本信息

  • 标题:Unsupervised Named Entity Recognition Using Syntactic and Semantic Contextual Evidence
  • 本地全文:下载
  • 作者:Alessandro Cucchiarelli ; Paola Velardi
  • 期刊名称:Computational Linguistics
  • 印刷版ISSN:0891-2017
  • 电子版ISSN:1530-9312
  • 出版年度:2001
  • 卷号:27
  • 期号:1
  • 页码:123-131
  • DOI:10.1162/089120101300346822
  • 语种:English
  • 出版社:MIT Press
  • 摘要:Proper nouns form an open class, making the incompleteness of manually or automatically learned classification rules an obvious problem. The purpose of this paper is twofold: first, to suggest the use of a complementary “backup” method to increase the robustness of any hand-crafted or machine-learning-based NE tagger; and second, to explore the effectiveness of using more fine-grained evidence—namely, syntactic and semantic contextual knowledge—in classifying NEs.
国家哲学社会科学文献中心版权所有