首页    期刊浏览 2024年12月11日 星期三
登录注册

文章基本信息

  • 标题:学習機構の解析に関する方法論的研究(第2報告) : 学習準備性(点)の解析(2) [in Japanese] A methodological study concerning an analysis of learning mechanism : II : Analysis of the readiness and relevance in learning (2) [in Japanese]
  • 本地全文:下载
  • 作者:中嶽 治麿/Nakadake Osamaro
  • 期刊名称:教育心理学研究
  • 印刷版ISSN:0021-5015
  • 电子版ISSN:2186-3075
  • 出版年度:1962
  • 卷号:10
  • 期号:1
  • 页码:11-19,63
  • 出版社:The Japanese Association of Educational Psychology
  • 摘要:

    In this report, the readiness to learn will be considered from the following points. (1) To abstract elements (S_i, S_i+1, …, S_j) of the point of readiness to learn (R_α). (2) To consider the structure of the point of readiness to learn (R_α). Let (S_i, S_i+1, …, S_j) be elements of the points of readiness with respect to the subject-matter (α), and let f_α (S_1, S_2, …, S_n) be achievement-degree of (α), then, f_α (S_1, S_2, …, S_j-1, …,1,S_j+1, …, S_n)=1 (1) f_α (S_1, S_2, …, S_j-1, …, 1, …0, …1, S_j+1, …, S_n)=0 (2) where, S_j=1 or 0. l=1, 2, …, i-1, j+1, …, n 1 : understanding of element (S_l) 0 : not understanding of element (S_l) and then from (1) (2), Q_l is defined as follows, Q-1=Σ__<(S_l)> {f_α(S_1, S_2, …, S_l-1, 1, S_l+1, …, S_n-f_α(S_1, S_2, …, S_l-1, 0, S_l+1, …, S_n)} (4) Σ__, n<(S_l)> : sum of all combinations of (S_1, S_2, …, S_l-1, S_l+1, …, S_n) If (S_l) is element of the point of readiness, then Q_l=2^n-m where, m : the number of elements of the points of readiness. If (S_l') is not element of the point of readiness, then Q_l'=0 From the above point of view, the elements of the point of readiness are abstracted by (4). The structure obtained logically from (1) (2), is represented as follows. R_α=(S_1=0, S_2=0, …, S_l-1=0, S_i=1, …, S_j=1, S_j+1=0, …, S_n=0) (3) This structure will be called equal weight structure. Unequal weight structures are represented ; R_α=(S_1=0, S_2=0, …, S_i-1=0, S_i=1, …, S_i+k-1=1, (S_i+k1=1, S_i+k2=0) or (S_i+k1=0, S_i+k2=1), S_i+K+1=1, …, S_j=1, S_j+1=0, …, S_n=0) (7) R_α=(S_1=0, S_2=0, …, S_i-1=0, S_i=1, …, S_i+k-1=1, S_i+k1+S_i+k2≥1, S_i+k+1=1, …, S_j=1, S_i+1=0), …, S_n=0) (8) where, S_i+k1>0, S_i+k2>0 for (8) The structure of (7) will be called Or-structure and the structure of (8) will be called And-structure. Considering the structures, the results are (9) (10) (11).

国家哲学社会科学文献中心版权所有