首页    期刊浏览 2024年12月11日 星期三
登录注册

文章基本信息

  • 标题:Optimal attribute-efficient learning of disjunction, parity, and threshold functions
  • 本地全文:下载
  • 作者:Ryuhei Uehara ; Kensei Tsuchida ; Ingo Wegener
  • 期刊名称:Electronic Colloquium on Computational Complexity
  • 印刷版ISSN:1433-8092
  • 出版年度:1996
  • 卷号:1996
  • 出版社:Universität Trier, Lehrstuhl für Theoretische Computer-Forschung
  • 摘要:Decision trees are a very general computation model. Here the problem is to identify a Boolean function f out of a given set of Boolean functions F by asking for the value of f at adaptively chosen inputs. For classes F consisting of functions which may be obtained from one function g on n inputs by replacing arbitrary n−k inputs by given constants this problem is known as attribute-efficient learning with k essential attributes. Results on general classes of functions are known. More precise and often optimal results are presented for the cases where g is one of the functions disjunction, parity or threshold.
国家哲学社会科学文献中心版权所有